COMBINATORICABolyai Society – Springer-Verlag

A SHARP BOUND FOR THE NUMBER OF SETS THAT PAIRWISE INTERSECT AT k POSITIVE VALUES

HUNTER S. SNEVILY

Received January 10, 2000

In this paper we prove that if \mathcal{L} is a set of k positive integers and $\{A_1, \ldots, A_m\}$ is a family of subsets of an n-element set satisfying $|A_i \cap A_j| \in \mathcal{L}$, for all $1 \leq i < j \leq m$, then $m \leq \sum_{i=0}^k \binom{n-1}{i}$. The case k=1 was proven 50 years ago by Majumdar.

1. Introduction

Throughout this paper X will denote the set $[n] = \{1, 2, ..., n\}$ and $\mathcal{L} = \{l_1, l_2, ..., l_k\}$ will denote a set of k arbitrary positive integers. Let $\mathcal{A} = \{A_1, A_2, ..., A_m\}$ denote a collection of subsets of X such that $|A_i \cap A_j| \in \mathcal{L}$ for all $1 \le i < j \le m$. We will sometimes refer to \mathcal{A} as an \mathcal{L} -intersecting family. In this paper we are concerned with finding upper bounds for $|\mathcal{A}|$. In particular, by modifying the results in [8] and [9], we prove that an \mathcal{L} -intersecting family of subsets of X has at most $\sum_{i=0}^k {n-1 \choose i}$ sets. The case k=1 was proven 50 years ago by Majumdar [5].

2. Main Result

First we must digress and discuss notation.

Notation. Let $\binom{X}{k}$ denote all the k-element subsets of X. Let $X^* = \{x_1, x_2, \dots, x_n\}$ be a collection of n variables and let $\binom{X^*}{k}$ (for $k \ge 1$) denote the set of all k-term multilinear monomials from X^* (e.g. $x_1x_2 \cdots x_k \in \binom{X^*}{k}$).

Mathematics Subject Classification (2000): 05D05

Let

$$\sum {X^* \choose k} = \sum_{x_{i_1} x_{i_2} \cdots x_{i_k} \in {X^* \choose k}} x_{i_1} x_{i_2} \cdots x_{i_k}$$

and let $\binom{X^*}{0} = 1$. Given $\mathcal{L} = \{l_1, l_2, \dots, l_k\}$ define

$$g_{\mathcal{L}}(y) = \prod_{1 \le i \le k} (y - l_i).$$

Since $g_{\mathcal{L}}(y)$ is a monic polynomial in y of degree k, we can write it (by a change of basis) in the form $g_{\mathcal{L}}(y) = \sum_{h=0}^{k} c_h\binom{y}{h}$, where c_0, c_1, \ldots, c_k are real numbers independent of y, which we will call the coefficients of \mathcal{L} .

Let

$$g_{\mathcal{L}}^*(x) = c_k \sum {X^* \choose k} + c_{k-1} \sum {X^* \choose k-1} + \dots + c_0$$

where the coefficients c_i are the coefficients of \mathcal{L} and $x = (x_1, x_2, ..., x_n)$. With each set $A_i \in \mathcal{A}$, we associate its characteristic vector $v_i = (v_{i_1}, v_{i_2}, ..., v_{i_n}) \in \mathbb{R}^n$, where $v_{i_j} = 1$ if $j \in A_i$ and $v_{i_j} = 0$ otherwise. Note that $g_{\mathcal{L}}^*(v_i) = g_{\mathcal{L}}(|A_i|)$.

For each $A_i = \{i_1, i_2, \dots, i_t\}$ a member of \mathcal{A} , let $A_i^* = \{x_{i_1}, x_{i_2}, \dots, x_{i_t}\}$ be a collection of $|A_i|$ variables where $x_{i_j} \in A_i^*$ if and only if $i_j \in A_i$. Let $\binom{A_i^*}{k}$ (for $k \ge 1$) denote the set of all k-term multilinear monomials from A_i^* . Let $\binom{A_i^*}{0} = 1$.

Using the same coefficients as in $g_{\mathcal{L}}^*(x)$ define $g_{A_i}^*(x) = c_k \sum {A_i^* \choose k} + c_{k-1} \sum {A_i^* \choose k-1} + \ldots + c_0$ where $x = (x_1, x_2, \ldots, x_n)$. Note that $g_{A_i}^*(v_i) = g_{\mathcal{L}}^*(v_i) = g_{\mathcal{L}}(|A_i|)$ and that $g_{A_i}^*(v_j) = g_{\mathcal{L}}(|A_i| \cap A_j|) = 0$ (for all $j \neq i$).

Claim 1. The coefficients of \mathcal{L} alternate in sign.

Proof of Claim 1. The proof is an induction on k. The basis case k=1 is trivial. Let $\hat{\mathcal{L}} = \{l_1, l_2, \dots, l_{k-1}\}$ and assume that our claim is true for $g_{\hat{\mathcal{L}}}(y)$. Thus $g_{\hat{\mathcal{L}}}(y) = c_{k-1}\binom{y}{k-1} + c_{k-2}\binom{y}{k-2} + \dots + c_0\binom{y}{0}$ with c_{k-2}, c_{k-4}, \dots all negative and c_{k-1}, c_{k-3}, \dots all positive. Now $g_{\mathcal{L}}(y) = g_{\hat{\mathcal{L}}}(y)(y-\ell_k)$ and note that $\ell_k \geq k$. Thus

$$g_{\mathcal{L}}(y) = c_{k-1} \frac{k}{k} \binom{y}{k-1} (y - (k-1) + k - 1) + c_{k-1} \binom{y}{k-1} (-\ell_k) + c_{k-2} \frac{k-1}{k-1} \binom{y}{k-2} (y - (k-2) + k - 2) + c_{k-2} \binom{y}{k-2} (-\ell_k) + \cdots + c_0 \binom{y}{0} y + c_0 \binom{y}{0} (-\ell_k).$$

So

$$g_{\mathcal{L}}(y) = c_{k-1} \cdot k \binom{y}{k} + c_{k-1} \cdot ((k-1) - \ell_k) \binom{y}{k-1} + c_{k-2} \cdot (k-1) \binom{y}{k-1} + c_{k-2} \cdot (k-1) \binom{y}{k-1} + c_{k-2} \cdot ((k-2) - \ell_k) \binom{y}{k-2} + c_{k-3} \cdot (k-2) \binom{y}{k-2} + c_{k-3} \cdot ((k-3) - \ell_k) \binom{y}{k-3} + \dots + c_0 \cdot (-\ell_k) \binom{y}{0}$$

where the last term has the opposite sign of c_0 .

From now on we will view the multilinear polynomials $g_{A_i}^*(x)$ as polynomials from \mathbb{R}^n to \mathbb{R} .

Claim 2. The $g_{A_i}^*(x)$'s are linearly independent.

Proof of Claim 2. Suppose our claim is false, then there must exist some linear combination of the $g_{A_i}^*(x)$'s equal to the zero polynomial, say:

(1)
$$\alpha_1 g_{A_1}^*(x) + \alpha_2 g_{A_2}^*(x) + \dots + \alpha_m g_{A_m}^*(x) = 0$$

For the moment treat the α_i 's as variables and let $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)$. For $Y \subset X$ let $L_Y(\alpha) = \sum_{j:Y \subset A_j} \alpha_j$ and consider the linear system

$$(S_1)$$
 $L_Y(\alpha) = 0$ for all $Y \subseteq X$ with $0 \le |Y| \le k$

In [9] it was shown that if \mathcal{A} is an \mathcal{L} -intersecting family of subsets of X, then S_1 has only the trivial solution. Now let Y_0 be an arbitrary subset in X with $|Y_0| \leq k$ and $Y_0 \subset A_i$ for some i. Without loss of generality assume that $Y_0 = \{1, 2, \ldots, r\}$ and consider the monomial $x_1 x_2 \cdots x_r$. Make the following substitution to the LHS of (1) for $x = (x_1, x_2, \cdots, x_n)$ let $x_i = y$ if $i \in Y_0$ and $x_i = 0$ otherwise. The LHS of (1) becomes a polynomial in y of degree r with the coefficient of y^r equal to c_r $L_{Y_0}(\alpha)$. Since this polynomial is equivalent to the zero polynomial for all possible values of y, we see that this implies that $L_{Y_0}(\alpha) = 0$. (Here we are using the fact that the coefficients of $\mathcal L$ are nonzero and the same for all of the $g_{A_i}^*$'s.) Since this must hold true for all $Y \subseteq X$ with $0 \leq |Y| \leq k$ we see that α must be a solution to S_1 . Hence $\alpha = (0,0,\ldots,0)$ and the $g_{A_i}^*$'s are linearly independent.

Let $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_k\}$ with $1 \leq \ell_1 < \ell_2 < \dots < \ell_k$ and let $\mathcal{A} = \{A_1, \dots, A_m\}$ be an \mathcal{L} -intersecting family with $|A_i| \leq |A_j|$ whenever i < j and assume that $|A_1| > \ell_1$. All polynomials in n-variables discussed below will be considered

as multilinear polynomials where each occurrence of x_i^p (p > 1) has been replaced by x_i . Let

 $f_{A_i}(x) = \prod_{\ell_j < |A_i|} (v_i \bullet x - \ell_j)$

where $v_i \bullet x$ is the standard inner product in $\mathbb{R}^n(x = (x_1, \dots, x_n))$ and $v_i = (v_{i_1}, \dots, v_{i_n})$ is the characteristic vector of A_i .

Note that $f_{A_i}(v_i) \neq 0$ and that $f_{A_i}(v_j) = 0$ whenever j < i (since $0^2 = 0$ and $1^2 = 1$). It is easy to show that the f_{A_i} 's are linearly independent.

We are now ready to prove our main result.

Theorem 1. If $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_k\}$ is a set of k positive integers and $\mathcal{A} = \{A_1, \dots, A_m\}$ is a family of subsets of an n-element set satisfying $|A_i \cap A_j| \in \mathcal{L}$, for all $1 \le i < j \le m$, then $|\mathcal{A}| \le \sum_{i=0}^k {n-1 \choose i}$.

Proof. Let $\ell_1 < \ell_2 < ... < \ell_k$. Without loss of generality if $|A_i| = \ell_1$ for some i then we may assume that $n \notin A_i$.

We may also assume (after relabeling) that for $1 \le i \le r, n \notin A_i$ and that for $i > r, n \in A_i$. Furthermore, we will assume that if r < i < j then $|A_i| \le |A_j|$. For i = 1, ..., m let us define a polynomial $p_i(x)$ in n variables as follows:

$$p_i(x) = g_{A_i}^*(x)$$
 for $1 \le i \le r$ and $p_i(x) = f_{A_i}(x)$ for $i > r$.

From now on we will view all multilinear polynimials as polynomials from \mathbb{R}^n to \mathbb{R} . Let $P_{\leq r} = \{p_i(x) : 1 \leq i \leq r\}$ and $P_{\geq r} = \{p_i(x) : i > r\}$.

We have already shown that $P_{\leq r}$ is a collection of linearly independent polynomials and that $P_{\geq r}$ is also a collection of linearly independent polynomials. We claim that $P_{\leq r} \cup P_{>r}$ is a collection of linearly independent polynomials. Suppose not. Then there must exist some linear combination of the p_i 's that equals the zero polynomial, say:

(2)
$$\alpha_1 p_1(x) + \ldots + \alpha_r p_r(x) + \alpha_{r+1} p_{r+1}(x) + \ldots + \alpha_m p_m(x) = 0$$

with some $\alpha_i \neq 0$ for some $i \leq r$ and with some $\alpha_j \neq 0$ for some j > r. Let j_0 be the least subscript greater than r such that $\alpha_{j_0} \neq 0$. Substituting the characteristic vector v_{j_0} into the LHS of (2) we get $\alpha_{j_0} p_{j_0}(v_{j_0}) = \alpha_{j_0} f_{A_{j_0}}(v_{j_0}) = 0$ which is impossible. Therefore the p_i 's are linearly independent.

Label the sets in $\binom{X-\{n\}}{0} \cup \binom{X-\{n\}}{1} \cup \ldots \cup \binom{X-\{n\}}{k-1}$ with the labels B_i for $i=1,\ldots,q=\sum_{i=0}^{k-1}\binom{n-1}{i}$ such that $|B_i|\leq |B_j|$ when i< j. Let w_i be the characteristic vector of B_i and let

$$h_{B_i}(x) = \prod_{j \in B_i} x_j$$

for i > 1. Note that the w_i are in $\Omega = \{0, 1\}^n$.

For $i=1,\ldots,q$ let us define a multilinear polynomial g_{B_i} in n variables as follows:

$$g_{B_1}(x) = x_n - 1$$

and

$$g_{B_i}(x) = x_n h_{B_i}(x) - h_{B_i}(x)$$
 for $i > 1$.

Clearly, the g_{B_i} 's are linearly independent (use the fact that $g_{B_i}(w_i) \neq 0$). Next we claim that the polynomials in $P_{\leq r}$ together with the g_{B_i} 's is a collection of linearly independent polynomials. Suppose not. Then there must exist some linear combination of the p_i 's $(i \leq r)$ and the g_{B_j} 's that equals the zero polynomial, say:

(3)
$$\alpha_1 p_1(x) + \ldots + \alpha_r p_r(x) + \beta_1 g_{B_1}(x) + \ldots + \beta_q g_{B_q}(x) = 0$$

with some $\alpha_i \neq 0$ and some $\beta_j \neq 0$.

Suppose $\beta_{j_0} \neq 0$ and assume that $|B_{j_0}| = t$. Make the following substitution to the LHS of (3) for $x = (x_1, \dots, x_n)$ let $x_i = y$ if $i \in B_{j_0} \cup \{n\}$ and $x_i = 0$ otherwise. Then the LHS of (3) becomes a polynomial in y of degree t+1 with the coefficient of y^{t+1} equal to β_{j_0} . Since this polynomial is equivalent to the zero polynomial for all possible values of y, we see that $\beta_{j_0} = 0$ a contradiction. Therefore the polynomials p_i 's $(i \leq r)$ together with the g_{B_j} 's are linearly independent. It is also easy to see that the p_i 's (with i > r) together with the g_{B_j} 's is a collection of linearly independent polynomials (all characteristic vectors $v_i = (v_{i_1}, \dots, v_{i_n})(i > r)$ have $v_{i_n} = 1$).

Finally, we claim that the p_i 's together with the g_{B_j} 's are linearly independent. Suppose not. Then there must exist some linear combination of the p_i 's and g_{B_j} 's that equals the zero polynomial, say:

(4)
$$\alpha_1 p_1(x) + \ldots + \alpha_r p_r(x) + \alpha_{r+1} p_{r+1}(x) + \ldots + \alpha_m p_m(x) + \beta_1 g_{B_1}(x) + \ldots + \beta_q g_{B_q}(x) = 0$$

with some $\alpha_i \neq 0$ for $i \leq r$, some $\alpha_j \neq 0$ for j > r, and some $\beta_k \neq 0$.

Let j_0 be the least subscript greater than r such that $\alpha_{j_0} \neq 0$. Substituting the characteristic vector v_{j_0} for x into equation (4) we have, $\alpha_{j_0} p_{j_0}(v_{j_0}) = \alpha_{j_0} f_{A_{j_0}}(v_{j_0}) = 0$ and this is an contradiction. Therefore our p_i 's and g_{B_j} 's are linearly independent. Now each g_{B_j} and p_i can be written as a linear combination of the multilinear monomials of degree $\leq k$. The number of such monomials is $\sum_{i=0}^k \binom{n}{i}$. We have $q = \sum_{i=0}^{k-1} \binom{n-1}{i} g_{B_j}$'s, thus $m \leq \sum_{i=0}^k \binom{n}{i} - \sum_{i=0}^{k-1} \binom{n-1}{i} = \sum_{i=0}^k \binom{n-1}{i}$ and we are done.

As a corollary we get the following well-known result of Frankl and Wilson [3].

Corollary (Frankl and Wilson). Let \mathcal{L}^* be a collection of k non-negative integers and let $\mathcal{A} = \{A_1, \dots, A_m\}$ be a collection of subsets of X. If $|A_i \cap A_j| \in \mathcal{L}^*$ for all $A_i, A_j, \in \mathcal{A}$, then $|\mathcal{A}| \leq \sum_{i=0}^k \binom{n}{i}$.

Proof. Suppose there exists a set $\mathcal{L}^* = \{0 = l_1, l_2, \dots, l_k\}$ and a set $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ such that $|A_i \cap A_j| \in \mathcal{L}^*$, for all $A_i, A_j \in \mathcal{A}$ but $|\mathcal{A}| > \sum_{i=0}^k \binom{n}{i}$. Create a new collection of sets $\mathcal{A}' = \{A_1', A_2', \dots, A_m'\}$ with $A_i' = A_i \cup \{n+1\}$. Then \mathcal{A}' is a collection of subsets of $X' = X \cup \{n+1\}$ such that $|A_i' \cap A_j'| \in \mathcal{L} = \{1, l_2 + 1, \dots, l_i + 1\}$, for all $A_i', A_j' \in \mathcal{A}'$ and $|\mathcal{A}'| > \sum_{i=0}^k \binom{(n+1)-1}{i}$, which is a contradiction.

3. Conjectures

Conjecture 1. Let p be a prime and let L and K be disjoint subsets of $\{0,1,2,\ldots,p-1\}$. Let $\mathcal{A}=\{A_1,A_2,\ldots,A_m\}$ be a collection of subsets of $X=\{1,2,\ldots,n\}$ with the property that $|A_i\cap A_j| \mod p \in L$ (for $i\neq j$) and $|A_i| \mod p \in K$. Then we claim $|\mathcal{A}| \leq \binom{n}{|L|}$ and this is best possible. (So far we have $|\mathcal{A}| < \binom{n}{|L|} + \binom{n}{|L|-1}$ for n sufficiently large [8].)

The next conjecture can be considered as a Bollobas Type Theorem related to perfect graphs.

Conjecture 2. Let $\mathcal{A} = \{A_1, A_2, \dots, A_m\}$ and $\mathcal{B} = \{B_1, B_2, \dots, B_m\}$ be two collections of subsets of an n-element set. Let $\mathcal{L} = \{l_1, l_2, \dots, l_k\}$ be a collection of k positive integers. Assume that for $i \neq j$ we have $|A_i \cap B_j| \in \mathcal{L}$ and that $|A_i \cap B_i| = 0$, then we conjecture that $m \leq \binom{n}{k}$.

This bound is sharp – just take all k-element subsets and all n - k-element subsets. This is related to perfect graphs via Padberg's conditions on p critical graphs. (Clique's are the A_i 's and the independent sets are the B_j 's and of course k = 1).

References

- [1] N. Alon, L. Babai and H. Suzuki: Multilinear polynomials and Frankl-Ray-Chaudhuri-Wilson type theorems, *Journal of Combinatorial Theory Series* (A) **58** (1991), 165–180.
- [2] L. Babai and P. Frankl: Linear Algebra Methods in Combinatorics, Book manuscript, version 2 (1992); Department of Computer Science, University of Chicago.
- [3] P. FRANKL and R. M. WILSON: Intersection theorems with geometric consequences, Combinatorica 1(4) (1981), 305–320.

- [4] P. Frankl and Z. Füredi: Families of finite sets with a missing intersection, in *Finite and Infinite Sets, Colloquia Mathematica Societis János Bolyai* 37 (1981) 305–320.
- [5] K. N. Majumdar: On some theorems in combinatorics relating to incomplete block designs, Ann. Math. Stat. 24 (1953), 377–389.
- [6] L. Pyber: An extension of a Frankl-Füredi theorem, Discrete Math 52 (1984) 253– 268.
- [7] G. V. RAMANAN: Proof of a Conjecture of Frankl and Füredi, J. Combin. Theory Ser. A 79 (1997) 53-67.
- [8] H. S. SNEVILY: On generalizations of the deBruijn–Erdös theorem, *J. Combin. Theory Ser. A* **68** (1994), 232–238.
- [9] H. S. SNEVILY: A generalization of Fisher's Inequality, J. Combin. Theory Ser. A 85 (1999) 120–125.

Hunter S. Snevily

Department of Mathematics University of Idaho Moscow, ID 83844 USA

snevily@uidaho.edu